
Ensuring Correct Cryptographic Algorithm and
Provider Usage at Compile Time

Weitian Xing
University of Waterloo

Waterloo, Canada
w23xing@uwaterloo.ca

Yuanhui Cheng
University of Waterloo

Waterloo, Canada
y82cheng@uwaterloo.ca

Werner Dietl
University of Waterloo

Waterloo, Canada
wdietl@uwaterloo.ca

ABSTRACT
Using cryptographic APIs to encrypt and decrypt data, calculate
digital signatures, or compute hashes is error prone. Weak or un-
supported cryptographic algorithms can cause information leakage
and runtime exceptions, such as a NoSuchAlgorithmException in
Java. Using the wrong cryptographic service provider can also lead
to unsupported cryptographic algorithms. Moreover, for Android
developers who want to store their key material in the Android
Keystore, misused cryptographic algorithms and providers make
the key material unsafe.

We present the Crypto Checker, a pluggable type system that
detects the use of forbidden algorithms and providers at compile
time. For typechecked code, the Crypto Checker guarantees that
only trusted algorithms and providers are used, and thereby ensures
that the cryptographic APIs never cause runtime exceptions or use
weak algorithms or providers. The Crypto Checker is easy-to-use:
it allows developers to determine which algorithms and providers
are permitted by writing specifications using type qualifiers.

We implemented the Crypto Checker for Java and evaluated it
with 32 open-source Java applications (over 2 million LOC). We
found 2 issues that cause runtime exceptions and 62 violations of
security recommendations and best practices. We also used the
Crypto Checker to analyze 65 examples from a public benchmark
of hard security issues and discuss the differences between our
approach and a different static analysis in detail.

CCS CONCEPTS
• Security and privacy → Cryptography; • Software and its
engineering → Automated static analysis.
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1 INTRODUCTION
Cryptographic APIs are hard to understand and use for developers
who are not cryptographers [24], which causes significant security
vulnerabilities. This paper focuses on one aspect of cryptographic
APImisuse: the inadvertent use of weak, unsupported, or disallowed
cryptographic algorithms or providers.

A keymethod to select cryptographic algorithms in Java is Cipher.
getInstance(String transformation)1. The transformation can be in
one of two formats: "algorithm/mode/padding" or simply "algorithm".
In the latter case, default mode and padding values will be used.
This method uses the installed providers, which offer the imple-
mentation of algorithms and other security services, to find the
implementation for the requested transformation. Alternatively,
developers can specify the provider via Cipher.getInstance(String

transformation, String provider).
A NoSuchAlgorithmException occurs when an algorithm that is

unavailable in the environment is requested [19]. This can be
caused by a misspelling or an incorrect assumption about the execu-
tion environment. For instance, Cipher.getInstance("AESS/GCM/No-
Padding") throws a NoSuchAlgorithmException at run time, because
there is no "AESS" algorithm. The Java cryptographic APIs could
have used fixed enum constants to guarantee that only valid algo-
rithms, modes, and paddings are used. However, strings were likely
chosen because they allow much more flexibility in the evolution
and customization of the APIs and their independent implementa-
tion by hardware and software providers.

When specifying the provider, developers must use algorithms
that are supported by this provider. The following code compiles
successfully, but throws a NoSuchAlgorithmException at run time
since PKCS7PADDING is not a valid padding for the provider SunJCE.
Developers should use the BouncyCastle (BC) provider instead.
// runtime error

Cipher.getInstance("AES/CBC/PKCS7PADDING", "SunJCE");

For Android developers who want to store the key material in the
Android Keystore, when generating security keys, AndroidKeyStore
needs to be used explicitly as the cryptographic service provider.
Otherwise, the Android Keystore system cannot protect the key
material from unauthorized use. Also, only a subset of algorithms
is supported by the Android Keystore, which means that a wrong
algorithm will lead to a runtime exception.

Similar to NoSuchAlgorithmException, NoSuchProviderException oc-
curs at run time when the requested provider does not exist in the
environment. For example:
// runtime error

KeyPairGenerator.getInstance("RSA", "WrongProvider");

1https://docs.oracle.com/javase/8/docs/api/javax/crypto/Cipher.html
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Unsupported algorithms or providers result in runtime exceptions,
which can be hard to reproduce and fix. Using weak algorithms is
even worse, as applications continue to operate and there will be no
errors at compile or run time. Using weak algorithms may cause the
exposure of sensitive information [8]. Some common symmetric
ciphers such as DES, IDEA, and RC4 are considered very insecure,
because their 64-bit keys are too short and susceptible to brute-
force attacks [1]. Similarly, hash functions MD5, MD4, SHA-1, and
the ECB operation mode, are prone to vulnerabilities. The compiler
will not warn against using weak algorithms and, as there is no
runtime exception when a weak algorithm is used, an application
can use weak algorithms for a long time. Therefore, finding the use
of weak cryptographic primitives at compile time is essential to
protect sensitive information.

In this paper, we present the Crypto Checker, which validates the
possible values used for cryptographic algorithms and providers at
compile time. It gives a strong guarantee that no forbidden algo-
rithms or providers are used in an application, which helps develop-
ers keep sensitive information safe and avoids runtime exceptions.
The Crypto Checker enforces several default security rules for al-
gorithms and providers. Users can also indicate their own rules
to meet their particular requirements by adding type annotations,
which is very convenient and easy to understand. Part of our work,
weak algorithm detection, was inspired by the AWS Crypto Policy
Compliance Checker [22]. Our work provides security rules for the
Android Keystore [16], supports provider checking, and presents a
thorough evaluation. Furthermore, to handle programs that read
cryptographic parameters from property files, we designed a prop-
erty file handler that performs type refinements for Java property
file APIs. The source code of the checker and the evaluation are
openly available2.

2 TYPE SYSTEM
In this section, we present the Crypto Checker type system, which
guarantees that only allowed algorithms and providers are used.
The presented ideas can be applied to any language, but we use
Java for examples. Section 2.1 describes the type qualifiers of the
type system. Section 2.2 discusses the qualifier hierarchy. Section
2.3 defines the type rules for assignments and pseudo-assignments.

The type system performs a modular, conservative over-approxi-
mation of all possible executions of a program. The type system
reports a false positive when it cannot guarantee a correct usage.
In our case studies, there were no false positives.

2.1 Type Qualifiers
Type qualifiers are used to specify properties that cannot be ex-
pressed by the standard type system [4, 12]. Java’s type annota-
tion syntax can be used to represent type qualifiers [18]. Devel-
opers use the annotations in source code to specify properties of
the program. In our type system, there are five type qualifiers:
@AllowedAlgorithms, @AllowedProviders, and @StringVal provide in-
formation about allowed algorithms, providers, and string values,
respectively; @Unknown and @Bottom complete the type lattice (see
Section 2.2).

2https://github.com/vehiloco/crypto-checker
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Figure 1: The basic qualifier hierarchy of the Crypto
Checker’s type system. Arrows represent the subtyping re-
lationships between types.

Type qualifiers @AllowedAlgorithms and @AllowedProviders record
the permitted algorithms and providers, as String arrays. For ex-
ample, @AllowedAlgorithms({"AES/GCM/NoPadding", "RSA"}) indicates
that there are only two legal cipher transformations, AES/GCM/NoPad-
ding and RSA. Developers can also use regular expressions to make
the type qualifiers more expressive. For example, @AllowedAlgori-
thms({"HmacSHA(1|224|256)"}) expresses that algorithms HmacSHA1,
HmacSHA224, and HmacSHA256 are allowed.

Type qualifier @StringVal expresses permitted String values, again
as an String array. Most commonly, @StringVal is automatically de-
termined for String literals in the program. This constant value
propagation is provided by the Constant Value Checker [13] in
the Checker Framework. For example, the String literal "RSA" has
the type qualifier @StringVal({"RSA"}). In contrast to @AllowedAlgo-

rithms and @AllowedProviders, @StringVal does not use regular ex-
pressions to describe possible values.

Type qualifier @Unknown is the top and default type qualifier in the
type system. It indicates that no information about the algorithm or
provider is known. The type system is conservative: when the type
system cannot determine a more precise type, e.g., @AllowedAlgori-
thms or @AllowedProviders, the top type will be used. Type qualifier
@Bottom is the bottom type and is used internally by the type system;
developers do not need to use it explicitly.

2.2 Qualifier Hierarchy
These type qualifiers form an easy-to-understand qualifier hierar-
chy (type qualifier lattice), which is shown in Figure 1. @AllowedAlg-
orithms and @AllowedProviders are subtypes of @Unknown and super-
types of @StringVal, while @Bottom is the bottom type in the type
system, subtype of @StringVal.

When determining the subtyping relation between two @Allowed-

Algorithms or two @AllowedProviders type qualifiers, the String[]

annotation type element also needs to be considered. The following
rule applies: for two types 𝜏1 and 𝜏2, 𝜏1 is a subtype of 𝜏2 if and
only if the element value of 𝜏2 contains the element value of 𝜏1.
To make it more concrete, @AllowedAlgorithms({"a"}) is a subtype
of @AllowedAlgorithms({"a", "b"}). Two @StringVal’s subtyping re-
lation is similar to the above rule [14].

These subtyping rules are sound but conservative: it is compu-
tationally hard to decide whether a regular expressions is sub-
sumed by another regular expression, that is, whether the set of

https://github.com/vehiloco/crypto-checker
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strings accepted by two regular expressions are subsets. To re-
solve this, our type system only checks whether the supertype
literally contains all the values in the subtype. For example, al-
though the regular expression SHA−(256|512) matches SHA−256, @All-
owedAlgorithms({"SHA−(256|512)"}) is not a supertype of @Allowed-
Algorithms({"SHA−256"}) while @AllowedAlgorithms({"SHA−256", "SH-

A−512"}) is.
For the subtyping relation between @StringVal and @Allowed-

Algorithms, or @StringVal and @AllowedProviders, our type system
has the following rule: @StringVal is a subtype of @AllowedAlgorithms
or @AllowedProviders if and only if @StringVal’s element valuesmatch
one of the regular expressions in @AllowedAlgorithms or @AllowedPro-
viders. As the arguments to @StringVal do not use regular expres-
sions, the type system simply needs to check whether the string
values match the regular expressions.

2.3 Type Rules for Assignment and
Pseudo-assignment

The subtyping rules from Section 2.2 are used wherever the type
system performs subtype checks, in particular for assignments and
pseudo-assignments.

For normal assignments, the type system checks whether the
type of the right-hand side is a subtype of the left-hand side’s type.
An example is demonstrated below. As discussed before, @StringVal
is the default type of String literals, and has the same element value
as the String literal. Hence, the String literal "SHA-256" has type
@StringVal({"SHA-256"}). As SHA-256matches the regular expression
SHA-(256|512), i.e., @StringVal({"SHA-256"}) is a subtype of @Allowed-
Algorithms({"SHA−(256|512)"}), this assignment typechecks.
@AllowedAlgorithms({"SHA−(256|512)"}) String algo;

algo = "SHA−256"; // correct

In contrast, the following assignment check fails because type
qualifier @StringVal({"SHA−384"}) is not a subtype of @AllowedAlgo-
rithms({"SHA−(256|512)"}):
algo = "SHA−384"; // error

Pseudo-assignments have many forms, such as passing an argu-
ment to a method invocation. The type system checks whether the
passed argument’s type is a subtype of the parameter’s type. For ex-
ample, for Cipher.getInstance("algorithm", "provider"), it ensures
the passed algorithm and provider argument types are subtypes of
the specifications from the parameter types.

In the following code, we annotate the parameter of the method
KeyGenerator.getInstance(String a)with @AllowedAlgorithms to spec-
ify that only HmacSHA256 and HmacSHA512 are accepted by the method.
The passed arguments, String literals "HmacSHA256" and "HmacSHA1",
have type @StringVal({"HmacSHA256"}) and @StringVal({"HmacSHA1"}),
respectively. The former type matches the regular expression, while
the latter one does not. Thus, @StringVal({"HmacSHA1"}) is not a
subtype of @AllowedAlgorithms({"HmacSHA(256|512)"}), and the type
system reports an error.
class KeyGenerator {

static KeyGenerator getInstance(

@AllowedAlgorithms({"HmacSHA(256|512)"}) String a);

}

KeyGenerator.getInstance("HmacSHA256"); // correct

KeyGenerator.getInstance("HmacSHA1"); // error

This extended subtype checking applies everywhere the program-
ming language performs subtype checks, e.g., to validate that a
type argument is a subtype of a type parameter bound. We forego
a soundness proof for this type system and instead rely on a stan-
dard type lattice and extended subtyping checks, which has been
successfully used for other systems [9].

3 CRYPTO CHECKER
We present the Crypto Checker, a pluggable type system for Java,
which implements the type system described in Section 2 and en-
forces the correct usage of algorithms and providers at compile time.
The Crypto Checker is built using the Checker Framework [9, 27],
which helps developers create pluggable type checkers. The Crypto
Checker is written with only 376 non-blank, non-comment lines
of Java code. Like other checkers based on the Checker Frame-
work, the Crypto Checker performs modular type checking and
flow-sensitive type refinement. Modular type checking analyzes
each method and class independently, which makes it fast and
light-weight. Flow-sensitive type refinement uses the control flow
of the program to refine type information. The Crypto Checker
is pluggable, it can be used together with other type checkers to
enforce multiple properties, e.g., with the Checker Framework’s
built-in Nullness and Tainting Checkers. Moreover, specifications
for binary-only code can be provided through stub files (minimal
Java source files that contain the annotations for external APIs).
The Crytpo Checker integrates into the normal Java build process
and produces error messages in the standard Java format.

Enforced Cryptographic Rules. The Crypto Checker implements
several default security rules extracted from security and static
analysis papers [1, 6, 11, 26] and the cryptographic API documen-
tation [15, 16, 25, 31]. These rules are normally considered safe and
reasonable. Stub files contain the annotated code that indicates the
allowed algorithms and providers. Developers can supply different
stub files to the Crypto Checker to apply different rules:

• cipher.astub stores the security rules of javax.crypto.Cipher.
• messagedigest.astub stores the security rules of java.secu-

rity.MessageDigest.
• hardwarebacked.astub stores the security rules of the Android
Hardware-backed Keystore.

• strongboxbacked.astub stores the security rules of the An-
droid Strongbox-backed Keystore.

Most developers only use cryptographic APIs and they can use
the provided stub files to follow best practices. Organizations may
want to create their own stub files or annotate their own crypto-
graphic APIs with specifications. All the stub files are available
with the Crypto Checker3.

The specifications from stub files are trusted by the Crypto
Checker, that is, there is no verification that the behavior of the
methods matches their specifications. The Crypto Checker type
checks Java source code, so it cannot verify whether stub files for
bytecode-only libraries are correct. Care needs to be taken when
encoding security rules in stub files and edits to stub files need
to be audited by security experts. In contrast, the Crypto Checker
ensures that type-checked source code follows all type rules, which

3https://vehiloco.github.io/crypto-checker/#stub-files

https://vehiloco.github.io/crypto-checker/#stub-files
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includes ensuring that additional specifications in source code are
used correctly.

Regular expressions allow compact encoding of the security
policies, in particular when compound algorithms are involved,
where using a pattern of the form
PBEWith(SHA1|SHA2|SHA3)with(DES1|DES2|DES3)

is much simpler than enumerating all combinations. See stub file
cipher.astub for examples.

Property File Handling. Cryptographic parameters such as algo-
rithms and providers are commonly stored in property files. This
makes enforcing a common standard easy and allows flexible re-
configuration. We found this pattern in many Java projects, e.g.,
Eclipse’s jgit [10] and Apache’s commons-cipher [2].

We added special handling in order to avoid false positive warn-
ings caused by conservative over-approximation of the values re-
turned by property files. A simple example is:
String CIPHER_ALGORITHM = "cipher.algorithm";

Cipher cipher = Cipher.getInstance(prop.getProperty(

CIPHER_ALGORITHM));

As the Crypto Checker is conservative, it would warn about the
use of the value read from the property as cryptographic algorithm.
In the above example, prop is an instance of the Properties class
which contains a set of properties. prop.getProperty(String key)

searches the provided key in the property set and returns the cor-
responding value if this specific key exists. Otherwise, null will
be returned. There is another method prop.getProperty(String key,

String defaultValue) which will return the default value if the key
does not exist.

A Properties instance is usually loaded from a property file, for
example:
Properties prop = new Properties();

InputStream inputStream = getClass().getClassLoader().

getResourceAsStream("config.properties");

prop.load(inputStream);

This kind of design establishes a barrier for static analysis tools
which need to extract the corresponding algorithm from property
files. To the best of our knowledge, there is no security tool that can
detect security flaws by looking through cryptographic parameters
in property files. SonarSource[29], a code analyzer for Java projects,
has a test suite with Properties. However, SonarSource only checks
the default value, not the value from a configuration file:
void usingJavaUtilProperties(Properties props) {

Cipher.getInstance(props.getProperty("myAlgo", "DES/ECB/

PKCS5Padding"));

}

The above code is compliant when the corresponding value of the
key myAlgo in props is a safe cipher algorithm. If myAlgo does not exist,
then the weak algorithm DES/ECB/PKCS5Padding will be used, which
is unsafe and should be reported to the developers. SonarSource
and other security tools do not analyse the properties file and only
check the default value. If the default value conforms to the security
rules, then it will pass the static analysis check while the value in
the properties file is ignored by the security tools. This can lead
to false positives or, even worse, false negatives: the algorithm in
the property is unsafe while the default algorithm is safe, i.e., the
unsafe algorithm will be used at run time, but the program can pass

the checks because only the default value, which is a safe algorithm,
is checked.

The Crypto Checker performs type refinement to handle read-
ing cryptographic parameters from property files. Consider the
following property file and the code snippet:
# a.properties

cipher=DES

# PropertyFileRead.java

Properties prop = new Properties();

InputStream inputStream = getClass().getClassLoader().

getResourceAsStream("a.properties");

prop.load(inputStream);

Cipher.getInstance(prop.getProperty("cipher"));

From the getResourceAsStream() call, the Crypto Checker propa-
gates the property file’s information to the return type of the
method invocation. When loading properties from the input stream,
the Crypto Checker keeps propagating the property file’s name to
the receiver, i.e., the object prop itself. Finally, when prop.getProp-

erty() is called, the Crypto Checker will try to read from the prop-
erties file as well to identify the property value. Then, the property
value will be added to the @StringVal annotation for the return type
of prop.getProperty(). For the example above, the Crypto Checker
views the code Cipher.getInstance(prop.getProperty("cipher")); as
equal to:
@StringVal("DES") String cipher = prop.getProperty("cipher");

Cipher.getInstance(cipher);

Moreover, if a default value is provided when reading a property,
the property file handler will also add the default value to the
@StringVal annotation. This will propagate both the default value
and the value determined from the file to the cryptographic APIs,
ensuring that both values are secure. Let us add "AES" as default
value to the example, resulting in:
@StringVal({"DES", "AES"}) String cipher = prop.getProperty(

"cipher", "AES");

Cipher.getInstance(cipher);

When the key does not exist in the property file, only the default
value will be added as @StringVal annotation type element. A "key-
not-found" warning will also be reported from the Crypto Checker
to help users correct their configuration files.

The property file handler is designed to be conservative to keep
the Crypto Checker sound: if, for whatever reason, the Crypto
Checker can not open and read a property file successfully, it will
treat the result of props.getProperty() as an unknown String value.
Thus, the Crypto Checker will issue an error if that unknown String
value is used in a cryptographic API. Users need to make sure that
the compile-time and run-time environments match, as the Crypto
Checker cannot control the content of loaded property files at
runtime. If property files might change at runtime, the conservative
defaults must be used instead, by not using the property file handler.

4 CASE STUDIES
To evaluate the Crypto Checker’s capability of detecting misuses
of cryptographic algorithms and providers in Java applications, we
ran the checker on 32 open-source projects consisting of 18 stan-
dard Java applications and 14 Android applications. These projects

https://github.com/vehiloco/crypto-checker/blob/master/src/main/java/org/checkerframework/checker/crypto/cipher.astub
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were chosen based on their popularity and relevance to crypto-
graphy. The 18 standard Java applications use either or both of
the Cipher and MessageDigest APIs; the 14 Android applications use
either or both of the KeyGenerator or KeyPairGenerator APIs. In total,
the Crypto Checker found security issues in 15 out of the 18 stan-
dard Java applications and 5 out of the 14 Android Applications. We
reported the security issues to the top 5 Java applications that have
the most issues and got responses from the Eclipse Californium
team. We also used 65 test cases from the CRYPTOAPI-BENCH [1]
to evaluate the Crypto Checker’s performance. After type checking,
we examined each error reported by the checker and added annota-
tions where necessary to ensure the correct usages of cryptographic
primitives.

For each standard Java project, we supplied two stub files (cip-
her.astub and messagedigest.astub). The results indicate insecure
uses of Cipher and MessageDigest (see Section 4.1). For each Android
project, we supplied the hardwarebacked stub file, and the results
indicate unsupported uses of KeyGenerator or KeyPairGenerator by
the Android Hardware-backed Keystore (see Section 4.2). Section
4.3 discusses the Crypto Checker’s performance with CRYPTOAPI-
BENCH.

4.1 Insecure Uses of Cryptographic APIs
The Crypto Checker issued 64 errors in 15 of the 18 analyzed stan-
dard Java applications and found no issues in the remaining 3
applications. Only 9 annotations were manually added to 3 of the
15 applications, to precisely specify the expected behavior (note
that defaults, flow-sensitive type refinement, and property file han-
dling are enough for most code; annotations are only needed when
specifications cross method boundaries). The discovered errors
include two bugs from Eclipse Californium where invalid argu-
ments were passed as the cipher transformations, which can cause
NoSuchAlgorithmException. The other 62 errors are all defects that
could cause cryptographic vulnerabilities, and they can be further
categorized into two types: 54 insecure cryptographic algorithms
(see Section 4.1.1) and 8 unsafe public methods (see Section 4.1.2).
No false positives are reported by the Crypto Checker. The evalua-
tion results of the 15 projects are listed in Table 1 in the Appendix.
The repository URLs for these 18 projects are listed in Table 2 in
the Appendix.

4.1.1 Insecure Cryptography. Overall, the Crypto Checker found 54
insecure cryptographic algorithms in these 15 applications, which
we classified into four categories:

• Category 1: 11 uses of insecure mode ECB for encryption;
• Category 2: 10 uses of cipher transformations without pro-
viding cipher mode or padding schema;

• Category 3: 11 uses of insecure ciphers; and
• Category 4: 32 uses of insecure hash functions.

The sum of the misuses in the list above is 64 rather than 54
since some cipher transformations break multiple rules, such as
DES/ECB/PKCS5Padding insecurely applies ECB and an insecure
cipher. We count both of these misuses as one defect.

The results for each app are summarized in Table 1 in the Ap-
pendix, and we discuss each category with examples next.

Category 1. Electronic Codebook (ECB) mode encrypts the same
plaintext blocks to identical ciphertext blocks, which makes it possi-
ble to leak information. Hence, it should not be used as the mode of
operation to encrypt data. Here is an example from class EncryptUtil
in Apache Kylin that uses insecure ECB mode:
// insecure ECB mode

Cipher.getInstance("AES/ECB/PKCS5Padding");

However, RSA/ECB/OAEPPADDING is secure to use since ECB
processes on blocks while RSA does not break the message into
blocks, which indicates that RSA does not really apply the ECB
mode [25, 32]. Hence, the Crypto Checker treats RSA/ECB/OAEP-
PADDING as a safe transformation.

Category 2. When generating a cipher instance, introducing the
cipher algorithm without the mode of operation or the padding
schema is discouraged. A default mode of operation and padding
schema would be used at run time, which could result in a false
sense of security. The following example is extracted from class
FileSystemConsumerStore in Eclipse’s lyo.server. The standalone ci-
pher algorithm, AES, defaults to insecure ECB mode that triggers a
misuse of the mode of operations:
// defaults to AES/ECB/..., which is insecure

Cipher.getInstance("AES");

However, there is an exception for RSA. It is allowed to only spec-
ify RSA in a cipher transformation, without providing the mode
of operation and padding schema. RSA defaults to RSA/ECB/P-
KCS1Padding [3], which is secure. Therefore Cipher.getInstance("R-
SA") is secure, which is used frequently in real-world applications.

Category 3. Insecure ciphers such as DES, Blowfish, and RC4
make brute-force attacks possible and should be forbidden. The
following example from class DESUtils in project whatsmars uses
one of the insecure ciphers, DES:
private static final String PADDING = "DES/ECB/PKCS5Padding";

// use of insecure cipher algorithm

Cipher cipher = Cipher.getInstance(PADDING);

Category 4. An insecure hash function such as SHA1, MD4, and
MD5 could cause collisions, which take different input but gen-
erate the same output. Hence, we only permit using strong hash
functions to produce hash values or message digests. The cipher
transformation could also apply an insecure hash function, such as
PBEWithMD5AndDES, which uses an insecure hash function and
insecure cipher simultaneously.

Here is an example, from class MessageDigestUtils in project
async-http-client, that uses the insecure hash function SHA-1:
try {

return MessageDigest.getInstance("SHA−1");
} catch (NoSuchAlgorithmException e) {

throw new InternalError("SHA1 not supported");

}

For project smart, one developer opened an issue [20] to point out
that an insecure hash function, MD5, is used. The Crypto Checker
reports that MD5 is indeed used by the project and that such a use
is insecure. For project flutter_secure_storage (one of the three
projects that have no cryptographic misuses), developers have
opened an issue [23] to discuss whether the cipher transforma-
tion RSA/ECB/PKCS1Padding is weak or not. They argued about
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this issue and did not reach an agreement. Checking the whole
project, the Crypto Checker reports that, according to our defined
rules, RSA/ECB/PKCS1Padding is used securely.

4.1.2 Exposure of Cryptographic APIs through Public Methods.
Sometimes cryptographic APIs are exposed by an application’s
public methods. These methods take the cryptographic algorithm
as a parameter and are accessible to outside callers. In this situ-
ation, insecure algorithms might be used and make the program
vulnerable to malicious attacks.

The Crypto Checker reported 8 occurrences of this vulnerability.
Consider this example from class Crypto in project rapidoid:
public static Cipher cipher(String transformation) {

try {

return Cipher.getInstance(transformation);

} catch (NoSuchAlgorithmException e) {

...

Calling Cipher.getInstance(transformation) raises security concerns,
as correct use of cryptographic algorithms is not guaranteed. There
are two possible solutions to this problem, depending on whether
callers should be trusted or not. The Crypto Checker performs
modular type checking, which allows developers to write speci-
fications by adding annotations. If callers of the method can be
trusted, for example, because they also use the Crypto Checker,
developers can add @AllowedAlgorithms to the transformation param-
eter. This will ensure that the transformation parameter must take
an allowed algorithm. For example, if only AES/GCM/PKCS5Padding

should be allowed, the parameter can be annotated as @AllowedAlgo-
rithm({"AES/GCM/PKCS5Padding"}).

If the public method can also be invoked by untrusted third
parties, the method should perform a runtime check on the param-
eter to ensure a valid cryptographic algorithm is selected. Runtime
checks are needed only in places where untrusted external invoca-
tions are possible. When annotating code, the developer can decide
what the right solution is for each situation.

4.2 Android Keystore Case Study
To make it difficult to extract sensitive data from an Android device,
Google introduced the Android Keystore System in Android 4.3.
Keystore is used to keep key material in secure hardware, such as
a Trusted Execution Environment (TEE) [7, 16]. This mechanism
takes effect only if the following two conditions are satisfied: 1)
AndroidKeyStore is used as the cryptographic service provider, and
2) the device’s secure hardware supports the particular combination
of transformations with which the key is authorized to be used [16].

However, developers might not use AndroidKeyStore as the prov-
ider even though their applications require high security. Devel-
opers might also use algorithms that are not supported by the
AndroidKeyStore provider. For example, HmacMD5 is not supported
by AndroidKeyStore but can be used with other providers.

To handle these cases, we used the Crypto Checker with hard-

warebacked.astub to find three vulnerabilities: 1) KeyGenerator.get-
Instance(algorithm) where the provider is not specified, 2) Key-

Generator.getInstance(algorithm, provider) where the provider is
not stated as AndroidKeyStore, and 3) KeyGenerator.getInstance(algo-
rithm, "AndroidKeyStore") where the algorithm is not supported by
AndroidKeyStore.

We tested the 14 security-sensitive Android applications listed
in Table 3 in the Appendix. No extra annotations were needed. The
Crypto Checker found that 4 out of the 14 projects were not using
AndroidKeyStore as the provider when generating keys, which corre-
sponds to vulnerability 1). We manually checked the source code of
these 4 projects and observed that for two of them, AndroidKeyStore
was never used across the whole program. In the remaining two
projects, AndroidKeyStore was not used consistently: some of the
cryptographic API uses designate AndroidKeyStore as the provider
while some do not. In this case, the key material may not always be
stored in the Android Hardware-backed Keystore. Both of the situa-
tions that miss the AndroidKeyStore could contribute to an insecure
environment, which can lead to unauthorized uses of key material.
For vulnerability 2), one project was found using a provider other
than AndroidKeyStore to generate keys. For vulnerability 3), we did
not find any violations among these 14 projects, which indicates
that all the algorithms were used correctly.

The Crypto Checker guarantees correct usage only for checked
source code. It gives no guarantees for sources it did not check,
for example, third-party libraries. It also cannot control the envi-
ronment in which the application is deployed. Users must make
sure that their phone hardware and operating system support the
Android Hardware-backed Keystore.

4.3 CRYPTOAPI-BENCH Case Study
The benchmark CRYPTOAPI-BENCH [1] consists of 171 test cases
to evaluate the quality of cryptographic vulnerability detection
tools. 65 out of the 171 test cases in the benchmark are about
misuses of cipher and hash functions. We used these test cases as
unit tests4 to test the Crypto Checker’s performance. The Crypto
Checker found all the errors that are expected by the benchmark,
and nine additional errors that we believe are noteworthy.

The benchmark covers field- and path-sensitive cases. As the
Crypto Checker is a type system that performs modular type check-
ing, we expect developers to add annotations to indicate the speci-
fications. With 79 added annotations, the Crypto Checker can han-
dle the field-sensitive cases. For path-sensitive cases, the Crypto
Checker issues nine cryptographic misuses. Take this example:
method2(2); // only invocation of method2

public void method2(int choice) {

Cipher cipher = Cipher.getInstance(insecureCipherAlgorithm);

if (choice > 1) {

cipher = Cipher.getInstance(secureCipherAlgorithm);

}

}

The benchmark supposes that the above code is safe because the
only observed call of the method uses a value that applies the secure
cipher algorithm. This test case aims to evaluate whether a static
analysis tool can properly perform whole-program value analysis
and path-sensitive refinement. In contrast, the Crypto Checker
treats this method as unsafe and it should not be trusted. Developers
could, in a future version of the code, pass values <= 1 to method2,
which triggers the creation of an insecure cipher instance. Also,
specifying the insecure cipher algorithm in the conditional branch
is a code smell. Hence, we do not consider these 9 errors to be false

4https://github.com/vehiloco/crypto-checker/tree/master/tests/cryptoapibench

https://github.com/vehiloco/crypto-checker/tree/master/tests/cryptoapibench
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positives, but rather the result of different analysis goals. Moreover,
it is rare for real-world applications to apply a secure or insecure
cryptographic algorithm depending on the value of a parameter.
This pattern did not come up in the 32 real-world applications.

5 RELATEDWORK
There is a large body of work on static analyses for many different
domains. In the following we can only review the most directly
related work. We discuss work that focuses on detecting misuses
of cryptographic APIs and compare them to the Crypto Checker.
Since our approach focuses on algorithms and providers, this will
be our main focus.

Algorithm Checking. The AWS Crypto Policy Compliance Chec-
ker (AWS Checker for short) is a type checker built on the Checker
Framework [9], which checks if there are any usages of weak cipher
algorithms in Java applications. Part of our work, weak algorithm
detection, is based on the idea of this checker. The AWS Checker has
twomain type qualifiers, @CryptoBlackListed and @CryptoWhiteListed,
to indicate the algorithms that are forbidden or allowed. It addi-
tionally has the @SuppressCryptoWarning annotation, which is used
to suppress errors from non-whitelisted algorithms. This annota-
tion can be used to document policy exceptions. For whitelisted
algorithms, AWS Checker offers an option to issue warnings for
algorithms that should not be used. For algorithm checking, com-
pared to the AWS Checker, the Crypto Checker supports checking
Android applications and also supplies a more comprehensive set
of security rules to developers.

CRYPTOGUARD [28] uses on-demand slicing algorithms to de-
tect cryptographic vulnerabilities. It can handle path and field-
sensitive cases. CRYPTOGUARD additionally covers a large number
of vulnerabilities, such as Rule 3 (Hardcoded Store Password), Rule
6 (Used Improper Socket), and Rule 7 (Used HTTP). For weak algo-
rithm uses, it has the following related rules: Rule 14 (Symmetric
Ciphers) and Rule 16 (Insecure Cryptographic Hash). CRYPTOAPI-
BENCH, which we used as a case study in Section 4.3, also had
an evaluation on CRYPTOGUARD. CRYPTOGUARD produced 10
false positives on the 65 test cases. By manually adding annota-
tions to some of the test cases, the Crypto Checker achieved zero
false positives. However, adding annotations may become a burden
to programmers as 79 annotations were added to these test cases.
Compared with CRYPTOGUARD’s slicing algorithm, the Crypto
Checker’s modular type checking analyzes less information, which
makes it more efficient but imprecise. Besides, modular type check-
ing is more conservative: using an open-world assumption may find
more potential vulnerabilities, such as exposures of public methods
(Section 4.1.2).

Error Prone [17] is a widely-used open-source static analysis
tool for Java. For cryptographic algorithm misuses, it has one bug
pattern called InsecureCryptoUsage which includes three particular
security rules: 1) Cipher instance should not be created with the
insecure ECB mode, 2) Diffie-Hellman protocol is insecure and

Elliptic Curves Diffie-Hellman (ECDH) should be used instead, and
3) do not use DSA for digital signatures.

Compared with Error Prone and CRYPTOGUARD, the Crypto
Checker gives developers the freedom to set their permitted algo-
rithm and provider rules easily using annotations. Users of Error
Prone have to learn how to write a new checker to enforce new
rules and CRYPTOGUARD has its rules hard-coded in the source
code.

Some other static analysis tools support cryptographic algorithm
checking, such as Coverity [30], SonarSource [29], SpotBugs [5],
and LGTM [21]. SonarSource and SpotBugs are open-sourced, while
Coverity and LGTM are not. SonarSource, SpotBugs, and LGTM
support writing custom rules, but that requires learning internal
APIs.

Provider Checking. We are not aware of any tools that support
provider checking or security rules for the AndroidKeyStore provider.

Java Properties Handling. Compared with all the above tools,
only the Crypto Checker can perform type refinement to Java
Properties, which reduces both false positives and false negatives,
making the static analysis more comprehensive and expressive.

6 CONCLUSION
One important cause of security vulnerabilities are cryptographic
algorithm and provider misuses. To resolve this, we present a plug-
gable type system for Java-like programming languages and im-
plement it for Java. It performs modular type checking to find
forbidden algorithm and provider usages at compile time.

We evaluated the Crypto Checker pluggable type system on 32
open-source Java applications and found 2 bugs and 62 potential
security vulnerabilities, including in well-maintained projects such
as Apache Dubbo and Apache Kylin. More broadly, we demonstrate
that pluggable type systems are an excellent option for source code
analysis: sound and robust infrastructure for analysis designers and
flexibility for tool users to use annotations to customize specifica-
tions, all while staying within a standard programming language. In
the future, we plan to analyze more cryptographic misuses, e.g., in-
secure initialization vectors and incorrect pseudo-random number
usage.
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A CASE STUDY DETAILS
This section presents additional details of the case studies discussed in Section 4. Table 1 shows the case study statistics for Java applications.
Tables 2 and 3 contain links to the repositories of the case studies.

Table 1: Case study statistics for standard Java applications. NCNBLOC stands for non-comment, non-blank lines of code.Man-
ual Annotations is the number of annotations we added to each application. Columns C1 (Insecure ECB), C2 (Cipher Without
Mode or Padding), C3 (Insecure Cipher), and C4 (Insecure Hash Function) are the four categories of insecure cryptography
(Section 4.1.1). Unsafe Public Methods is the number of public methods that use cryptographic APIs (Section 4.1.2). C1 + C2 +
C3 + C4 may not be equal to Total Defects, since some code violates multiple rules simultaneously.

Java Applications NCNB LOC Manual Annotations Total Defects C1 C2 C3 C4 Unsafe Public Methods
Apache Druid 639k 0 3 0 0 0 1 2
Apache Kylin 201k 0 4 2 0 0 2 0
Apache Dubbo 168k 0 2 0 0 0 2 0
redisson 149k 0 3 0 0 0 3 0
Eclipse Californium 87k 6 10 1 4 0 2 3
rapidoid 66k 2 4 0 0 0 2 2
NettyGameServer 34k 0 5 0 2 2 3 0
async-http-client 33k 0 9 4 0 5 4 0
whatsmars 28k 0 5 4 0 2 1 0
ha-bridge 18k 0 2 0 0 2 2 0
mongodb-rdbms-sync 15k 0 2 0 2 0 0 0
java-telegram-bot-api 11k 0 1 0 0 0 1 0
smart 5k 0 1 0 0 0 1 0
Eclipse Lyo Server 3k 0 2 0 2 0 0 0
aes-rsa-java 1k 1 9 0 0 0 8 1
Totals 1458k 9 62 11 10 11 32 8

Table 2: Repository URLs of Java applications listed in Table 1.

Java Applications Repository URL
Apache Druid https://github.com/apache/druid.git
Apache Kylin https://github.com/apache/kylin.git
Apache Dubbo https://github.com/apache/dubbo.git
redisson https://github.com/redisson/redisson.git

Eclipse Californium https://github.com/eclipse/californium.git
https://github.com/xwt-benchmarks/californium.git

rapidoid https://github.com/rapidoid/rapidoid.git
https://github.com/xwt-benchmarks/rapidoid.git

NettyGameServer https://github.com/jwpttcg66/NettyGameServer.git
async-http-client https://github.com/AsyncHttpClient/async-http-client.git
whatsmars https://github.com/javahongxi/whatsmars.git
ha-bridge https://github.com/bwssytems/ha-bridge.git
mongodb-rdbms-sync https://github.com/gagoyal01/mongodb-rdbms-sync.git
java-telegram-bot-api https://github.com/pengrad/java-telegram-bot-api.git
smart https://github.com/a466350665/smart.git
Eclipse Lyo Server https://github.com/eclipse/lyo.server.git

aes-rsa-java https://github.com/wustrive2008/aes-rsa-java.git
https://github.com/xwt-benchmarks/aes-rsa-java.git

Elephent https://github.com/jusu/Elephant.git
jpass https://github.com/gaborbata/jpass.git
flutter_secure_storage https://github.com/mogol/flutter_secure_storage.git
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Table 3: Repository URLs of Android applications.

Android Applications Repository URL
CacheManage https://github.com/ronghao/CacheManage.git
fingerlock https://github.com/aitorvs/fingerlock.git
wigle-wifi-wardriving https://github.com/wiglenet/wigle-wifi-wardriving.git
FingerprintRecognition https://github.com/PopFisher/FingerprintRecognition.git
LolliPin https://github.com/omadahealth/LolliPin.git
PFLockScreen-Android https://github.com/thealeksandr/PFLockScreen-Android.git
secure-quick-reliable-login https://github.com/kalaspuffar/secure-quick-reliable-login.git
lock-screen https://github.com/amirarcane/lock-screen.git
BiometricPromptDemo https://github.com/gaoyangcr7/BiometricPromptDemo.git
Fingerprint https://github.com/OmarAflak/Fingerprint.git
connectbot https://github.com/connectbot/connectbot.git
revolution-irc https://github.com/MCMrARM/revolution-irc.git
Secured-Preference-Store https://github.com/iamMehedi/Secured-Preference-Store.git
jpico https://github.com/mypico/jpico
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